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inequality for unbounded parametric set
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Abstract

An asymptotic version of the Borovkov–Sakhanenko’s integral informa-
tion inequality is established for unbounded parametric sets under general
Lebesgue’s integrability assumptions on the prior. No unbiasedness nor
“weak unbiasedness” is required.

1 Introduction

We study Cramér–Rao type integral inequalities due to Borovkov and
Sakhanenko [1, 2], which may be also interpreted as inequalities for the
Bayesian risk. The first integral inequality of this sort in a rather gen-
eral form, even though under a bit vague set of assumptions, was estab-
lished in [9, 10]. The former of these references can be found in [7], how-
ever, [9] is just a one page seminar abstract without any proof. But the
paper [10] does contain a rigorous proof, quite naturally, based on some
version of Cauchy–Bouniakovsky–Schwarz inequality. There is also a use-
ful link http://www-igm.univ-mlv.fr/˜ herstel/Mps on the publication list
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by M. P. Schützenberger. Strangely, the paper [10] was not noticed by
theoretical statisticians: in particular, there is no reference on it even in
[7]. To discover the paper [10], the second author ought to ask Maurice
Schützenberger’s disciples and his daughter which were so kind as to provide
the required text. In any case, in about a decade after the publication of [10],
the idea of integral version of Cramér–Rao inequality, – at the time frequently
called by three names, including Fréchet (see [5]), – was re-discovered in [11],
and since that time inequalities of this kind are called van Trees inequalities.
The meaning of integral inequalities is that they do not require unbiasedness
of estimators. Instead, a dramatically weaker condition called “weak unbi-
asedness” is used, but it has a questionable connection to unbiasedness. For
example, one of sufficient conditions for the former is that the prior density
vanishes on the boundary of the parametric set; by all means, this is far
away from unbiasedness. A technical idea is, of course, integration by parts
with respect to the parameter. So far, we did not discuss smoothness. As
usual in this area, the most standard assumption on derivatives is C1 (cf.
below the Proposition 1), which, of course, may be slightly weakened, e.g.,
to existence of derivative in L2. The next step was made by Borovkov and
Sakhanenko [1, 2]. Firstly, they introduced a new functional for the lower
bound of integral type CR inequality, more precise than earlier functional by
Schützenberger and van Trees in the asymptotical sense (see below). Sec-
ondly, they showed that there is also an asymptotic version of the Bayesian
Cramér-Rao inequality which remains valid for even more general class of
prior densities, under a Riemann’s integrability assumption. In the other
words, for an asymptotic inequality no smoothness is needed, nor vanishing
of the prior on the boundary of the parametric set. By the way, this makes
the idea of “weak unbiasedness” disappear completely.

Notice that, of course, any limiting assertion becomes really useful where
there is some rate of convergence established. In this sense, Borovkov–
Sakhanenko’s results required some complementary bounds of remainder
terms. Under certain additional smoothness, such bounds have been estab-
lished in [1], [2], [8]. Nevertheless, even without such estimates of convergence
rate, a limiting assertion may be helpful, since it may show, e.g., asymptot-
ical effectiveness of some estimators, while complementary bounds on con-
vergence rate may help, e.g., verify effectiveness of a second order or some
others. Another argument is that rate of convergence always requires certain
smoothness assumptions, while a theoretical statistician in some cases may
be interested whether in the worst situation, – i.e., without any smoothness,
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– asymptotical effectiveness still holds true. In such situation just a limiting
result like the Theorems 1 or 2 below may be of some help.

In the present paper we show that in the case Θ = R1, Riemann’s in-
tegrability condition is not necessary either and may be replaced by more
logical Lebesgue’s one, thus, extending results from [12] on this unbounded
case. Another result is yet another slightly corrected version of Borovkov and
Sakhanenko’s asymptotic inequality under the Riemann’s integrability (R.i.)
type condition, in addition to filling some minor gaps in the original proof
similar to those discussed in [12, Remark 4]. Notice that, of course, more
general unbounded parametric sets can be considered in this way, however,
we leave it till further studies. In [1, 2], the cases of bounded and unbounded
Θ are considered simultaneously, which, in fact, brings some difficulties with
Riemann’s integrability in the unbounded Θ case. It looks like original proof
of Borovkov and Sakhanenko of the asymptotical inequality (see, e.g., [1])
shall require direct Riemann’s integrability (d.R.i.), not mentioned in the
cited works. We do not pursue this goal here. Our methods are similar to
those applied in [12], but the calculus is not a full analogue, due to technical
difficulties related to unboundedness. In particular, it is clearly impossible in
the case Ω = R1 to require inf q > 0, the property used in [12] for bounded
Ω. We also suggest some new version of weak integrability condition in aux-
iliary results for smooth functions, suitable for the unbounded case, cf. the
Proposition 1 below.

The paper consists of the Introduction (above), the Section 2 with a
setting and main results, the Section 3 with auxiliary results, and the Sec-
tions 4 and 5 with proofs. The last Section 6 provides simple arguments
that Borovkov–Sakhanenko’s functional for the lower bound (“J” below) is
optimal in the asymptotical setting, unlike Schützenberger–van Trees’ one.
Notice that optimal choice of functional in the pre-limiting inequalities is,
of course, more involved (see some examples in [1], about various choices of
functionals see [6]); however, optimality in [6] is not discussed. In such a
situation, asymptotically optimal Borovkov–Sakhanenko’s functional could
be a reasonable approach for large samples.
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2 Bayesian setting: assumptions and main

results

Let us consider a family of probability densities f(x|θ), x ∈ Rd, with respect
to Lebesgue measure, with a parameter θ ∈ Θ ⊂ R1. In the present paper
we tackle the case Θ = R1; other unbounded cases could be treated similarly.
We assume that there is a prior density q(θ), θ ∈ Θ, and denote f(x, θ) :=
f(x|θ)q(θ). Let θ∗(X) denote any estimator of θ. The quality of the estimator
is assessed by the integral or Bayesian functional∫

(Eθ(θ
∗(X)− θ)2)q(θ) dθ ≡ E(θ∗ − θ)2,

where Eθ means expectation with respect to the density f(·, θ), integration∫
. . . dθ is performed over the domain of q, – i.e., in our case over the whole

line R1, – X = (X1, . . . , Xn) is a sample of i.i.d. random variables from the
distribution f(·, θ). The notation E is used for the “complete expectation”,
i.e., with respect both to X and θ. In fact, the estimator depends also on
the sample size n, and in the asymptotical sense we may be interested in the
effectiveness in the sense of the functional

lim inf
n→∞

n
∫

(Eθ(θ
∗(X)− θ)2)q(θ) dθ, (1)

which is, of course, oriented on “smooth” case in the sense of smoothness of
the densities with respect to x.

We always assume that the Fisher information function is well-defined,

I(θ) = Eθ

(
∂L(X, θ)

∂θ

)2

,

where L(X, θ) is a conditional likelihood function for the sample X given
θ. The latter, as well as the existence of the densities f(x|t), is a part of
the setting and will not be repeated in the main assumptions below. The
problem under consideration is lower bounds for the functional (1).
We assume the following.

(A1)

0 < J :=
∫ ∞
−∞

q(t)

I(t)
dt <∞, and

∫ m

−m

√
I(t)dt <∞, ∀ m > 0.
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(A2) For every m > 0 there exists Cm > 0 such that

C−1
m ≤

q(t)

I(t)
≤ Cm, −m < t < m,

and
inf

t∈[−m,m]
I(t) > 0, ∀ m > 0.

As a consequence of (A2), for every m > 0, inft∈[−m,m] q(t) > 0.

Remark 1. In general, continuity of I is not required in (A2), unlike in
[1, 2] where the latter condition is implicitly assumed.

Remark 2. In some papers on the subject, formally a more general situ-
ation is considered, without any assumption which prevents the density q
from vanishing. However, some auxiliary constructions may become more
cumbersome. We wished to avoid this, and assume explicitly that q does not
vanish. Clearly, some generalisation is possible, but we do not pursue this
goal here.

Theorem 1 Let the assumptions (A1) and (A2) be satisfied. Then,

lim inf
n→∞

nE(θ∗ − θ)2 = lim inf
n→∞

n
∫ ∞
−∞

Et(θ
∗ − t)2q(t)dt ≥ J. (2)

Another version of assumption (A2) will be used in the next result.
Clearly, under continuity of I, Riemann’s integrability of q/I and of q are
equivalent; the latter was used in [1, 2].

(A2’) Function q/I is Riemann integrable on every bounded interval in R1

and inf q = qm > 0 for every m > 0. In additions, the function I is
required to be continuous.

Theorem 2 Let the assumptions (A1) and (A2’) be satisfied. Then, the
inequality (7) holds true.

5



3 Auxiliary results

Let us state two useful technical results which will be applied in the proof of
the main theorems below.

Proposition 1 Let hε(t) be a C1–smooth function satisfying for any x

lim
t→±∞

t hε(t)
f(x, t)

q(t)
≡ lim

t→±∞
t hε(t)f(x | t) = 0, (3)

and let the second part of (A1) be satisfied, – that is
∫ m

−m

√
I(t)dt <∞, for

all m > 0, – be satisfied. Then,

n
∫ ∞
−∞

Et(θ
∗ − t)2q(t)dt ≥

(∫ ∞
−∞

hε(t)dt
)2

∫ ∞
−∞

I(t)
h2
ε(t)

q(t)
dt+

1

n

∫ ∞
−∞

(h′ε(t))
2

q(t)
dt

. (4)

Practically all papers on the subject contain one or another version of this
inequality, see, e.g., See [1, Theorem 30.1], [12, Proposition 1 ]. However, the
authors did not manage to find he assumption (3) in earlier works. We skip
the details of the proof; however, for the convenience of the reader we show
the basic identity on which the latter is based,

E

(
(θ∗(X)− θ) (f(X | θ)hε(θ))′θ

f(X, θ)

)
=
∫
hε(t) dt = E

hε(θ)

q(θ)
. (5)

In turn, (5) follows from

E

(
θ∗(X)

(f(X | θ)hε(θ))′θ
f(X, θ)

)
=
∫
θ∗(x)

(∫
(f(x | t)hε(t))′t dt

)
dx = 0,

and

−E
(
θ

(f(X | θ)hε(θ))′θ
f(X, θ)

)
= −

∫ (∫
t (f(x | t)hε(t))′t dt

)
dx = E

hε(θ)

q(θ)
,

both due to (3) used in the integration by parts. Now Cauchy–Bouniakovsky–
Schwarz inequality applied to (5) gives (4).

Remark. Suppose
∫
hε < ∞ and 0 ≤ hε ≤ C < ∞. Then I/q ≤ C

would suffice for convergence of the integral
∫
Ih2

ε/q; however, this condition
is equivalent to q/I ≥ C−1 > 0 which contradicts to the convergence of the
integral

∫
q/I over R1, the latter convergence being a standing assumption.
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Lemma 1 Let the assumption (A1) hold true, and let there be a sequence
0 ≤ qm(t) ↑ q(t) (a.e.) as m→∞, such that for any estimator θ∗,

lim inf
n→∞

n
∫ ∞
−∞

Et(θ
∗
n(X)− t)2q̃m(t)dt ≥

∫ ∞
−∞

q̃m(t)

I(t)
dt, (6)

where

q̃m(t) =
qm(t)

κm
and κm =

∫ ∞
−∞

qm(θ)dθ.

Then,

lim inf
n→∞

nE(θ∗ − θ)2 = lim inf
n→∞

n
∫ ∞
−∞

Et(θ
∗ − t)2q(t)dt ≥ J (7)

holds true with the prior q(t).

For the proof in the case Θ = [a, b] see [12, Lemma 1]; in our case the proof
is practically the same, so we skip it.

4 Proof of Theorem 1

1. We will approximate q by appropriate qm and apply the Lemma 1. Let

qm(t) := q(t)1(−m+ 1 < t < m− 1), m > 1.

Then, 0 ≤ qm(t) ↑ q(t), m→∞.
Denote

κm =
∫ m

−m
qm(θ)dθ and q̃m(t) =

qm(t)

κm
.

To prove the Theorem, it suffices to show that for every m,

lim inf
n→∞

n
∫ m

−m
Et(θ

∗
n(X)− t)2q̃m(t)dt ≥

∫ m

−m

q̃m(t)

I(t)
dt. (8)

Denote

Sm := supp(qm) = [−m+ 1,m− 1],
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and

h0,m(t) :=
q̃m(t)

I(t)
,

and consider the following continuous piece-wise linear functionϕ = ϕε,m,
with ε ≤ 1 and m > 1,

ϕ(t) = ϕε,m(t) =



(ε+ 1)t+ εm, −m ≤ t ≤ −m+ 1

(
1− ε

m−1

)
t, −m+ 1 ≤ t ≤ m− 1

(ε+ 1)t− εm, m− 1 ≤ t ≤ m

Notice that

ϕ(−m) = −m, ϕ(−m+ 1) = −m+ 1 + ε, ϕ(m− 1) = m− 1− ε, ϕ(m) = m,

0 < C−1 ≤ ϕ′ε,m ≤ C <∞, sup−m≤t≤m |ϕ′ε,m(t)− 1| → 0, as ε→ 0,

sup−m≤t≤m |ϕε,m(t)− t| → 0, as ε→ 0,

and
q̃m(−m+ 1−) = q̃m(m− 1+) = 0.

In particular, it follows,

sup
v

∣∣∣∣∣1− 1

2ε

∫ ϕ−1
ε,m(v+ε)

ϕ−1
ε,m(v−ε)

dt

∣∣∣∣∣→ 0, ε→ 0. (9)

Let

hε,m(t) :=
1

2ε

∫ ϕε,m(t)+ε

ϕε,m(t)−ε
h0,m(v)dv. (10)

Since qm ≡ 0 outside [−m+ 1,m− 1], then

hε,m(−m) = hε,m(m) = 0 for ε ≤ 1.

Hence, the functions hε,m satisfy the assumption (3).
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Moreover, the function hε,m(t) defined in (10) is absolutely continuous and
differentiable almost everywhere, with a.e. (in)equalities,

h′ε,m(t) =
1

2ε
{h0,m(ϕε,m(t) + ε)− h0,m(ϕε,m(t)− ε)} ,

∣∣∣h′ε,m(t)
∣∣∣ ≤ 1

2ε
{h0,m(ϕε,m(t) + ε) + h0,m(ϕε,m(t)− ε)} .

Since qm ≤ q, q̃m(t) = qm(t)/κm, q(t)/I(t) ≤ C, and h0,m(t) = q̃m(t)/I(t),
we get,

0 ≤ h0,m(t) =
q̃m(t)

I(t)
=

qm(t)

I(t)κm
≤ q(t)

I(t)κm
≤ C

κm
.

Therefore, there exists C ′ such that for every ε small enough, and every m
large enough, ∣∣∣h′ε,m(t)

∣∣∣ ≤ C ′

ε
.

The function hε,m(t) satisfies all conditions of the Proposition 1, so,

n
∫ m

−m
Et(θ

∗ − t)2q̃m(t)dt ≥

(∫ m

−m
hε,m(t)dt

)2

∫ m

−m
I(t)

h2
ε,m(t)

q̃m(t)
dt+

1

n

∫ m

−m

(h′ε,m(t))2

q̃m(t)
dt

. (11)

2. Let us show that ∫ m

−m
hε,m(t)dt→

∫ m

−m
h0,m(t)dt, (12)

and ∫ m

−m
I(t)

h2
ε,m(t)

q̃m(t)
dt→

∫ m

−m

q̃m(t)

I(t)
dt, ε→ 0. (13)

If we manage to choose ε as a function of n so that the term 1
n

∫ m

−m

(h′ε,m(t))2

q̃m(t)
dt

vanishes, the assertions (12)–(13) will imply (11) with hε,m replaced by hm,
which would provide an opportunity to apply the Lemma 1. The proof of
(12)–(13) follows the plan used in [12], so we only show the main points and
the main changes.
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3. To show (12), we notice that∫ m

−m
hε,m(t)dt =

∫ m

−m
dt

1

2ε

∫ ϕε,m(t)+ε

ϕε,m(t)−ε
h0,m(v)dv

→
∫ m−ε

−m+ε
h0,m(t)dt =

∫ m

−m
h0,m(t)dt, ε→ 0.

The second convergence here holds true due to the Lebesgue dominated con-
vergence theorem and (9).

4. To show (13), we notice that∫ m

−m

I(t)

q̃m(t)

(
h2
ε,m(t)− h2

0,m(t)
)
dt

=
∫ m

−m

I(t)

q̃m(t)
(hε,m(t)− h0,m(t)) (hε,m(t) + h0,m(t)) dt.

Since the terms I(t)/q̃m(t) and (hε,m(t) + h0,m(t)) are uniformly bounded on
Sm, it suffices to establish convergence∫ m

−m
|hε,m(t)− h0,m(t)| dt→ 0, ε→ 0. (14)

Let δ > 0 be any positive, and let us approximate the function h0,m(t) in
L1[−m,m] by some continuous function hδ0,m(t) so that∫ m

−m

∣∣∣h0,m(t)− hδ0,m(t)
∣∣∣ dt < δ.

Then, denoting

hδε,m(t) =
1

2ε

∫ ϕε,m(t)+ε

ϕε,m(t)−ε
hδ0,m(v)dv,

we get,∫ m

−m

∣∣∣hε,m(t)− hδε,m(t)
∣∣∣ dt =

∫ m

−m

∣∣∣∣∣ 1

2ε

∫ ϕε,m(t)+ε

ϕε,m(t)−ε

(
h0,m(v)− hδ0,m(v)

)
dv

∣∣∣∣∣ dt

≤
∫ m

−m

1

2ε

∫ ϕε,m(t)+ε

ϕε,m(t)−ε

∣∣∣h0,m(v)− hδ0,m(v)
∣∣∣ dvdt
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=
∫ m

−m

∣∣∣h0,m(v)− hδ0,m(v)
∣∣∣ dv 1

2ε

∫ ϕ−1
ε,m(v+ε)

ϕ−1
ε,m(v−ε)

dt

≤ 2δ.

Hence,

∫ m

−m
|hε,m(t)− h0,m(t)| dt ≤

∫ m

−m

∣∣∣hε,m(t)− hδε,m(t)
∣∣∣ dt

+
∫ m

−m

∣∣∣h0,m(t)− hδ0,m(t)
∣∣∣ dt+

∫ m

−m

∣∣∣hδε,m(t)− hδ0,m(t)
∣∣∣ dt

≤ 3δ +
∫ m

−m

∣∣∣hδε,m(t)− hδ0,m(t)
∣∣∣ dt.

For every fixed δ > 0, the latter integral tends to zero as ε→ 0, because the
function hδ0,m(t) is uniformly continuous, and, hence,

sup
x

∣∣∣hδε,m(t)− hδ0,m(t)
∣∣∣ dt→ 0, ε→ 0.

Therefore, for every δ > 0,

lim sup
ε→0

∫ m

−m
|hε,m(t)− h0,m(t)| dt ≤ 3δ;

however, the left hand side does not depend on δ, hence, (14) holds true,
which implies (13).

5. From (11), (12) and (13) we conclude that

lim inf
n→∞

n
∫ m

−m
Et(θ

∗−t)2q̃m(t)dt ≥

(∫ m

−m
h0,m(t)dt

)2

∫ m

−m
h0,m(t)dt+ lim sup

n→∞

1

n

∫ m

−m

(h′ε,m(t))2

q̃m(t)
dt

.

We estimate,

1

n

∫ m

−m

(h′ε,m(t))2

q̃m(t)
dt ≤ 1

n

∫ m

−m

C ′2

ε2q̃m(t)
dt =

C ′2

ε2n

∫ m

−m

1

q̃m(t)
dt .
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Hence, for fixed m we can choose ε = ε(n) = C ′n−1/5, then
limn→∞ 1/(ε2n) = 0. Hence, we obtain,

lim inf
n→∞

n
∫ m

−m
Et(θ

∗ − t)2q̃m(t)dt ≥
∫ m

−m
h0,m(t)dt.

Due to the Lemma 1, this implies the desired asymptotic inequality (7).
Indeed,

h0,m(t) =
q̃m(t)

I(t)
,

so, ∫ m

−m
h0,m(t)dt =

∫ m

−m

q̃m(t)

I(t)
dt→ J, m→∞.

The Theorem 1 is proved.

5 Proof of Theorem 2

1. Let us denote,
qm− := inf

−m≤t≤m
q(t) > 0,

see the assumption (A2’). As in the proof of the Theorem 1, we will ap-
proximate q by appropriate q̃m and apply the Lemma 1. Except this step,
the method is rather close to the calculus in [12, Theorem 1], however, we
ought to present it in order to make sure that it works in this new situation,
indeed. Let

qm(t) := q(t)1(−m+ 1 < t < m− 1), m > 1,

κm =
∫ m

−m
qm(θ)dθ and q̃m(t) =

qm(t)

κm
.

To prove the Theorem, it suffices to show that for every m,

lim inf
n→∞

n
∫ m

−m
Et(θ

∗
n(X)− t)2q̃m(t)dt ≥

∫ m

−m

q̃m(t)

I(t)
dt. (15)

For the function
∫m
−m(h′ε(t))

2/q̃m(t) dt, the following notation will be used,

Hm(ε) :=
∫ m

−m
(h′ε(t))

2/q̃m(t) dt.
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Let
h0,m(t) := q̃m(t)/I(t),

h̄ε,m(t) := min
|u|≤ε

q̃m(t+ u)

I(t+ u)
, h̃ε,m(t) := h̄ε,m(t) ∧

qm−
ε
, −m ≤ t ≤ m,

and

hε,m(t) :=
1

2ε

∫ t+ε

t−ε
h̃ε,m(v) dv. (16)

With this definition, we clearly have

h̃ε,m(t) ≤ h0,m(t), & 0 ≤ hε,m(t) ≤ h0,m(t). (17)

Now, the function hε,m defined in (16) is absolutely continuous and differen-
tiable almost everywhere, with

|h′ε,m(t)| ≤ Cq̃m(t)

ε
∧ q̃m(t)

I(t)
,

and hε,m(−m) = hε,m(m) = 0, for any ε > 0. Due to the assumption (A2’),
the function Hm(ε) is finite, and, moreover,

Hm(ε) ≤ C

ε2

∫ m

−m

q̃2
m(t)

q̃m(t)
dt ≤ C

ε2
.

2. Let us show that

h̃ε,m(t)→ h0,m(t), ε ↓ 0 (a.e.). (18)

For that, due to the Lebesgue dominated convergence theorem, it suffices to
show that ∫ m

−m
(h0,m(t)− h̃ε,m(t)) dt ↓ 0, ε ↓ 0. (19)

This follows similarly to [1, Proof of Theorem 30.5], where this hint is applied
to the function q. We have, by virtue of the R.i. condition and the theorem
about Darboux’ integral sums,

∑
k

h̄δ,m(2kδ) 2δ →
∫ m

−m
h0,m(t) dt, δ → 0,

∑
k

h̄δ,m((2k + 1)δ) 2δ →
∫ m

−m
h0,m(t) dt, δ → 0.
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Estimate the difference,

0 ≤
∑
k

(h̄δ,m(2kδ)− h̃δ,m(2kδ)) 2δ

≤ 2δ
∑
k

h̄δ,m(2kδ) 1(h̄δ,m(2kδ) > qm− /(2δ)).

However, since h0,m is Riemann integrable, it must be bounded on [−m,m],
and so is h̄δ,m ≤ h0,m. Since inft∈[−m,m] q̃m(t) > 0, then it follows from (A2’)

that h̃δ,m ≡ h̄δ,m as δ is small enough. Then, of course,

1(h̄δ,m(2kδ) > qm− /(2δ)) = 0.

Therefore the sum
∑
k h̄δ,m(2kδ) 1(h̄δ,m(2kδ) > qm− /(2δ)) equals zero if δ is

small enough. So,

0 ≤
∑
k

(h̄δ,m(2kδ)− h̃δ,m(2kδ)) 2δ → 0, δ → 0.

Similarly,

0 ≤
∑
k

(h̄δ,m((2k + 1)δ)− h̃δ,m((2k + 1)δ)) 2δ → 0, δ → 0.

Hence,∫ m

−m
h̃ε,m(t) dt ≥

(∑
k

h̃2ε,m(4kε) 2ε+
∑
k

h̃2ε,m((4k + 2)ε) 2ε

)

→
∫ m

−m
h0,m(t)dt, ε→ 0. (20)

Since
∫m
−m h̃ε,m ≤

∫m
−m h0,m, the latter convergence implies (19); strictly speak-

ing, we have shown just convergence, not a monotone one; but, by construc-
tion, the function h̃ε,m increases with ε decreasing. Hence, (18) holds true
almost everywhere for −m ≤ t ≤ m.
3. Notice that hε,m satisfies the assumptions of the Proposition 1, being
differentiable and since it vanishes at −m and m. So, we get, with ε =
(Cn)−1/3,

n
∫ m

−m
Eθ(θ

∗ − θ)2 q̃m(θ) dθ ≥

(∫m
−m hε,m(t) dt

)2

∫m
−m I(t)hε,m(t)2/q̃m(t) dt+ n−1/3

. (21)
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Hence, to complete the proof, it suffices to establish∫ m

−m
hε,m(t) dt→

∫ m

−m
h0,m(t) dt, (22)

and ∫ m

−m
I(t)hε,m(t)2/q̃m(t) dt→

∫ m

−m
q̃m(t)/I(t) dt, ε→ 0. (23)

4. We have,

0 ≤
∫ m

−m
(h0,m(t)− hε,m(t)) dt

=
∫ m

−m

(
h0,m(t)− 1

2ε

∫ t+ε

t−ε
h̃ε,m(v) dv

)
dt

=
∫ m

−m

1

2ε

∫ t+ε

t−ε

(
h0,m(t)− h̃ε,m(v)

)
dv dt

=
∫ m

−m

1

2ε

∫ t+ε

t−ε

(
h0,m(t)− h̃ε,m(t)

)
dv dt

+
∫ m

−m

1

2ε

∫ t+ε

t−ε

(
h̃ε,m(t)− h̃ε,m(v)

)
dv dt.

Here,∫ m

−m

1

2ε

∫ t+ε

t−ε

(
h0,m(t)− h̃ε,m(t)

)
dv dt =

∫ m

−m

(
h0,m(t)− h̃ε,m(t)

)
dt→ 0, ε→ 0,

due to (19). On the other hand side,∫ m

−m

1

2ε

∫ t+ε

t−ε

(
h̃ε,m(t)− h̃ε,m(v)

)
dv dt =

∫
h̃ε,m(t) dt−

∫
h̃ε,m(v)

(
1

2ε

∫ v+ε

v−ε
1 dt

)
dv = 0.

Thus, indeed, (22) holds true.
5. Further, by virtue of (17) and (22), we also have,

0 ≤
∫ I(t)

q̃m(t)
(h2

0,m(t)− h2
ε,m(t)) dt

=
∫
h−1

0,m(h0,m(t)− hε,m(t))(h0,m(t) + hε,m(t)) dt

≤
∫
h−1

0,m(h0,m(t)− hε,m(t))2h0,m(t) dt

= 2
∫

(h0,m(t)− hε,m(t)) dt→ 0, ε→ 0.

15



Whence, from (21), (22) and (23) the desired inequality (15) follows. By
virtue of the Lemma 1, this finally implies (7). The Theorem 2 is proved.

6 Of optimal choice of h

Theorem 3 Assume
∫
q/I < ∞. Then the optimal choice of h(≥ 0) in the

maximization problem

sup
h

(∫ ∞
−∞

h(t)dt
)2

∫ ∞
−∞

I(t)
h2(t)

q(t)
dt

,

is
h = c

q

I
, with any c > 0.

Proof. The problem is equivalent to minimization,

min
h≥0:

∫
Θ
h(t)dt=1

∫
Θ
I(t)

h2(t)

q(t)
dt.

It is easy to see that only h0 = cq/I may be a minimizer. Indeed, any
other function is not because it cannot satisfy the necessary condition of
optimality. More than that, this choice provides, clearly, a local minimizer,
since for any suitable (admissible) ϕ, we have the second derivative in any
direction positive. We skip the calculus because it suffices to have a guess
about the minimizer.

The proof of the Theorem follows immediately from the Cauchy–
Bouniakovsky–Schwarz inequality. Indeed, for any h,(∫ ∞

−∞
h(t)dt

)2

∫ ∞
−∞

I(t)
h2(t)

q(t)
dt

≤
∫ q

I
, (24)

since (∫ ∞
−∞

h(t)dt
)2

≤
∫ q

I

∫ ∞
−∞

I(t)
h2(t)

q(t)
dt.
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On the other hand, if we choose h0 = cq/I (with any c), then(∫ ∞
−∞

h(t)dt
)2

∫ ∞
−∞

I(t)
h2(t)

q(t)
dt

=
c2(
∫
q/I)2∫

(I/q)c2(q/I)2
=
∫
q/I.

An equality sign in (24) is only possible for the choice of h where I(t)h
2(t)
q(t)

=

const q/I, by virtue of the equality part of the Cauchy–Bouniakovsky–
Schwarz inequality. The latter equation implies once more that necessarily
h = cq/I, which confirms that the details about local minimizers omitted
above are redundant. The Theorem 3 is proved.
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